

VECTROSTAR R25 - R65 - R120 - R200 - R200P - R200T

Commissioning, Technical and Maintenance manual

INTRODUCTION

VECTROSTAR R starters are designed to reduce a specific starting resistance as gradually as possible, and as harmoniously as possible, according to the resistant torque of the machine. Ohmic value of the resistor value is close to 0 at the end of the starting sequence.

Running principle :

The starter allow the motor to deliver its maximum torque at minimum speed. Unblocking loaded machines is even possible.

The rising electrolyte level makes the resistance between the electrodes decreasing continuouly and smoothly. The recycling valve evacuates hot electrolyte during starting. That way, the electrolyte remains liquid and permit a perfect start.

At the end of starting period, final resistance is almost zero. Then, the time relay control the short circuiter.

Advantages :

- ✓ Smooth start whithout mechanical shakes.
- ✓ Current reduced to its minimum.
- ✓ Simple and precise adjustment of starting conditions.
- ✓ Starter designed to work in hard conditions.
- Starting time adjustable by Electrolyte dosing and valves adjustment.
 Several and identical startings possible due to the big electrolyte tank.
- ✓ Security due to double electrical insulation and to electrolyte temperature measurement.
- ✓ Srength and high resistance to corrosion.
- ✓ Reduced maintenance.

Doc N° : 02ENU75	Rev: 0	Written by: M. Parthiot	
File :02ENU750	Date : 22/12/06	Checked by: F.Lavogiez	Page : 2 / 15

Applications :

Use Electrolytic starters VECTROSTAR R for starting slip rings and squirrel cage motors.

Slip rings motor

The starter is plugged on the rotor. At the end of starting period, final resistance is almost zero. The three-phase switch short-circuits the rotor.

Squirrel-cage motor

The starter is plugged on the stator. The motor must be star connected (ex : for a 230/400V motor, the supply voltage must be 400V). At the end of starting, the short circuiter creates the star point of the motor.

Nota : remove the connections in the motor terminal box. The star point is made by the short circuiter of the starter.

CAPTION

Doc N° : 02ENU75	Rev:0	Written by: M. Parthiot	
File :02ENU750	Date : 22/12/06	Checked by: F.Lavogiez	Page : 3 / 15

TECHNICAL SPECIFICATIONS

Adequacy motor / starter :

Slip rings motor

Starter choice according to maximum motor power

Starter	R25	R65	R120	R200	R200P	R200T
Maximum motor power (kW)						
Loaded motor	40	90	160	300	600	900
Unloaded motor	50	110	200	335	650	1000

Maximum rotoric current according to the short circuiter

Short circuiter ref	Short circuiter rating	Maximum rotoric current
LC1D40P7	80T	85 A
LC1D80P7	140T	175 A
LC1F115M5	260T	280 A
LC1F185M5	315T	380 A
LC1F265M7	420T	490 A
LC1F400M7	500T	700 A
LC1F500M7	1000T	980 A

Squirrel-cage motor

Starter choice according to maximum motor power and maximum power of the short circuiter

Starter	R25	R65	F	R120	R200
Maximum motor power (kW)					
Loaded motor	30	45		110	200
Unloaded motor	37	55		132	220
Short circuiter rating	80T	80T	140T	260T	315T
Maximum short-circuiter power (kW)	30	45	90	147	200

Dimensions, weight and electrolyte capacity :

	Α	В	С	D	Ε
R25	570	410	390	240	385
R65	750	600	470	335	425
R120	900	735	560	275	525
R200	1045	880	560	415	525

	Weight (kg)		Capacity
	Empty	Full	(L)
R25	20	45	25
R65	38	103	65
R120	65	185	120
R200	78	278	200

Doc N° : 02ENU75	Rev:0	Written by: M. Parthiot	
File :02ENU750	Date : 22/12/06	Checked by: F.Lavogiez	Page : 4 / 15

Caracteristics :

Maximum rotoric voltage Ur (V)	V STAR R25 et R65 : 600 V
	V STAR R120 et R200 : 800 V
	For Ur >800, ask for an optional
Short circuiter KMCC	Three phases switch Télémécanique
	Coil 230 V – AC 50-60 Hz
Number of startings per hour	4 startings per hour or 3 consecutive startings
	per hour (depending on the load, ambiant
	temperature and starting time)
Starting time	From 5 to 35 seconds (valves adjustment)
Ambient temperature (°C)	With antifreeze : up to -25°C
	0°C to + 35°C : normal conditions
	+ 35°C à + 45°C : reduced rate
Maximum relative humidity	95 % without any condensation
Maximum altitude	1000 Meters
Casing	V STAR R25 & R65 : polypropylene tank & hood
	V STAR R120 & R200: fiberglass reinforced
	polyester tank & hood
Protection degree	IP 569
Positionning	Horizontal area, difference of level 2% max
Security	Electrolyte temperature control
Auxiliary contacts	1 contact DEFAUT NF
	Max.voltage : 415 V AC
	Thermal current : 4A
	VSTAR R120 et R200: Hypsotherm (Pump
	motor temperature)
Start command	230 V linked with short circuiter

HANDLING AND STORAGE

The starter is delivered in a cardboard, set and attached to a wooden pallet. It must be transported vertically. After unpacking, the cardboard must be thrown away, recycled or kept.

The starter must be stored closed, without electrolyte, in his original cardboard. Storage temperature must be comprised between -10 and +45°C, without too much humidity (95% max). The consumable such as soda, antifreeze and anti-evaporation oil must be stored in their original package inside the starter

Empty the starter before any transporation and use the original wooden pallet.

Consumables :

Soda, antifreeze and anti-evaporation oil must be stored far from food, strong oxidatives and flammable products. The storage location must be well ventilated.

Use only METAL DEPLOYE RESISTOR products.

Handling the products :

Wear GLOVES, GLASSES and PROTECTION CLOTHES. Do not drink, eat or smoke during this job.

Read the products Safety data sheet before handling.

Doc N° : 02ENU75	Rev:0	Written by: M. Parthiot	
File :02ENU750	Date : 22/12/06	Checked by: F.Lavogiez	Page : 5 / 15

COMMISSIONING

Caution : Unplug power before working on the equipment. Commissioning must be make by entitled personnal only

Important : Before each test : Put the casing on the starter in order to avoid contact with on potential parts.

Filling the tank :

For use at temperatures under 0°C, add antifreeze to electrolyte. Use only METAL DEPLOYE RESISTOR antifreeze (Mono-Ethylene-Glycol). Antifreeze quantity depends on temperature level and tank capacity.

-	Quantity (L)					
Température °C	R25	R65	R120	R200		
-10	5	15	25	40		
-15	10	20	35	60		
-20	10	25	40	70		
-25	10	30	50	80		

Pour out antifreeze into the tank and complete to the MAX level with water.

Pluging power supply :

Use plastic cable glands to permit the cables to enter the frame of the starter. As the starter is double insulated, there is no need to connect it to earth.

In order to not apply any torque to the electrodres, use 2 wrenches for clamping your cables to electrodes.

Doc N° : 02ENU75	Rev:0	Written by: M. Parthiot	
File :02ENU750	Date : 22/12/06	Checked by: F.Lavogiez	Page : 6 / 15

Concentrate electrolyte preparation :

In a water bucket, pour soda and water according to the following table. Let it cool down.

	R25	R65	R120	R200
Soda weight	250 g	500 g	500 g	1000 g
Water quantity	0.5 L	1 L	1 L	2 L

Caution : The mixture temperature can rise up to 90°C.

Wear GLOVES, GLASSES and PROTECTION CLOTHES. Do not drink, eat or smoke during this job.

In case of discharge on eye or skin, rinse out with clear water and consult a doctor.

Pour the electrolyte into the dosing bottle.

Test without power (IMPORTANT) :

In order to prepare the following startings, we need to fill in the starting tank at minimum level.

- ✓ Tune the time relay on its maximum
- ✓ Switch off the power
- ✓ Turn on the starter
- ✓ The pump starts until the time relay is over.

The starter is ready for the following tests.

Doc N° : 02ENU75	Rev:0	Written by: M. Parthiot	
File :02ENU750	Date : 22/12/06	Checked by: F.Lavogiez	Page : 7 / 15

ADJUSTMENTS

First adjustment according to your use :

		Squirrel cage motor			Wounded rotor motor
		Pre adjustment	Starti	ng parameters guide	
MACHINE	TYPE	lp = x ln	ld = x ln	Td (sec)	ld = x ln
Pump	Centrifugal	2.5	2.8	8-10	0.7-1
	Piston	3	3.5	12-15	0.9-1.2
Compressor	Rotary screw	2.5	2.8	8-10	0.7-1
	Piston	3	3.5	12-45	0.9-1.2
Fan	Centrifugal	3	3.5	20-40	0.7-1.2
	Screw	2.7	3	12-20	0.7-1
Crusher	Jaw	3	3.5	25	0.8-1.2
	Ball or Rod mill	3.6	4.1	30	0.8-1.2
	Hammer	3.5	3.8	30-35	0.8-1.2
	Impact	3.6	4	25	0.8-1.2
	Gyratory	2.5	2.5	15	0.7-1
Sieve		3	3.5	15	1
Press	Pelleting	2.7	3	5	0.7-1
	Mechanical	2.7	3	30	0.7
Arm conveyor		3	3.5	20-40	0.8-1.2
Extractor		3.6	4	40-90	0.7-0.9
Wood hog		3	3.5	20-40	0.8-1.2
Pulper		3	3.5	15	0.7-0.9
Disk refiner		2.7	3	8-10	0.8
Mixer		2.7	3	12	
Bandsaw		3.5	4	20-30	1
Circular saw		2.7	3	8	0.6

Adjustment for SLIP RINGS MOTOR :

1. Valves and time relay

Flow valve (lièvre – tortue) :	R65 \rightarrow Position 7
	R120/200 → Plant adjustment

- Recycling valve : Rotoric level (top located)
- Time relay :Max (around 100 sec)

Doc N° : 02ENU75	Rev:0	Written by: M. Parthiot	
File :02ENU750	Date : 22/12/06	Checked by: F.Lavogiez	Page : 8 / 15

2. Preliminary adjustment

This adjustment consists on several short time tests that avoid the electrolyte to heat. The goal of this step is to obtain a low value of rotoric voltage (around 20%). Use a voltmeter, a chronometer and dosing bottle.

IMPORTANT : The motor must be loaded like in real conditions.

Note : If the motor starts too fast, empty a quarter of the tank, and re-add water and antifreeze.

Doc N° : 02ENU75	Rev:0	Written by: M. Parthiot	
File :02ENU750	Date : 22/12/06	Checked by: F.Lavogiez	Page : 9 / 15

3. Final adjustment

Adjustment for SQUIRREL CAGE MOTOR :

1. Valves and time relay

Flow valve (hare - turtle) : R65	→ Step 9 R120/200 → Max (lièvre) minus 2 turns
Recycling valve :	R65 → Repère 5 R120/200 → Entre repères 3 et 4
Time relay :	Max (around 100 seconds)

2. Preliminary adjustment

This adjustment consists on several short time tests that avoid the electrolyte to heat. The goal of this step is to reach the preliminary current Ip of the machine. Use a voltmeter, a chronometer and the dosing bottle.

IMPORTANT : The motor must be loaded like in real conditions.

Doc N° : 02ENU75	Rev:0	Written by: M. Parthiot	
File :02ENU750	Date : 22/12/06	Checked by: F.Lavogiez	Page : 10 / 15

Doc N° : 02ENU75	Rev:0	Written by: M. Parthiot	
File :02ENU750	Date : 22/12/06	Checked by: F.Lavogiez	Page : 11 / 15

3. Final adjustment

COMMISSIONING

- ✓ Switch off the power
- ✓ Check time relay adjustment (Running time of the pump)
- ✓ Check the connnections between electrodes and wires
- ✓ Lock recycling valve
- ✓ Adjust the measured starting time and add a security (2 to 10 seconds)
- ✓ Pour the anti-evaporation oil in the tank
- \checkmark Run a complete starting under control, and write starting parameters

Id = _____ A Td = _____ sec Total number of doses = _____ *doses*

✓ Fix hood and skirt to the starter.

Doc N° : 02ENU75	Rev:0	Written by: M. Parthiot	
File :02ENU750	Date : 22/12/06	Checked by: F.Lavogiez	Page : 12 / 15

MAINTENANCE

Caution : Unplug power before working on the equipment. Commissioning must be make by entitled personnal only

Important : Before each test : Put the casing on the starter in order to avoid contact with on potential parts.

Check twice a year :

- ✓ Electrolyte level : if it is too low, add water without electrolyte
- ✓ All connections
- ✓ Electronic components
- ✓ Starting quality

Change electrolyte every 3 years

Electrolyte neutralization

When removing electrolyte from the starter, the electrolyte containing soda, oil and anti-freeze must be stored and recycled.

As quantity of soda contained in electrolyte is low, electrolyte can be neutralized with nitric acid.

PARTICULARITY FOR R200P/T

Principle :

The VectroStar R200P & R200T have been designed on the same principle than the other VECTROSTAR R except that they use 2 or 3 reserve tanks and 2 or 3 start tanks instead of 1. Their conception corresponds to the need of an higher thermal absorbtion. However, they only need one set of control devises (Time relay) and one short circuiter.

- ✓ The VectroStar R200P includes a Master unit (a VectroStar R200) and one Slave unit (a VectroStar R200 without Time Relay and without Short circuiter) electrically linked together.
- ✓ The VectroStar R200T includes a Master unit and 2 Slave units electrically linked together.

The principle is to get 2 or 3 times the same resistance in parallel so that all the devices will work in the same conditions to balance the power to be dissipated.

Doc N° : 02ENU75	Rev:0	Written by: M. Parthiot	
File :02ENU750	Date : 22/12/06	Checked by: F.Lavogiez	Page : 13 / 15

<u>Wiring diagram</u>		1 0 - 2 0 - 3 0 -	230V – 50Hz	Slave
	Master	40- 50- 60-		-05
		7 0 - 8 0 -		-07 -08

Electrolyte rising adjustment

The goal of this adjustment is to obtain the same electrolyte level at all time in every starter tank.

- 1. Switch off the power.
- 2. Adjust on the same manner, on each starter :
 - ✓ Recycling valve
 - ✓ Flow valve
- 3. Dismantle electrodes support
 - ✓ Tag support relative position with the tank
 - ✓ Unscrew the 3 mounting bolts
 - ✓ Dismantle the copper bars (short circuiter side only)
 - ✓ Remove the whole block *support* + *copper bars*
- 4. Run the pump and look at the rising in the starting tanks.

At all time, electrolyte level must be identical in all the starting tanks. To get this adjustment, the valves must be adjusted in the same manner. Use flow valve adjustment to get the good electrolyte rising.

5. Re-assembly electrodes support.

Starting adjustment

Adjustment and commissioning are identical as for a single starter.

Doc N° : 02ENU75	Rev:0	Written by: M. Parthiot	
File :02ENU750	Date : 22/12/06	Checked by: F.Lavogiez	Page : 14 / 15

TROUBLESHOOTING

In case of problem, refer to the following chart and try to diagnostic the trouble. You can also contact MDR customer service at the following address :

1, route de Semur 21500 Montbard tél : 03 80 89 58 75 fax : 03 80 92 24 33 e-mail : power.resistor@mdresistor.com

Your motor				
Doesn't start	Démarre	Stops during	Stops during	Check
Docsnit start	mal	starting	fonctionnement	
				Control elements :
X		X	X	Thermostat
				Relays
x	x	x	x	Load conditions :
				Inappropriate motor
				Too high ambiant temperature
				Blocked rotor
				Time relay
	X		X	Connections
				Control wires :
x	X	X	X	Cut wire
				Untightened lug
				The pump :
X	X	x		Pump protection relay
				Capacitor
				Le short circuiter:
			х	Control voltage
				Magnetic circuit
X	X			Recycling valve position
X		x	X	Fuses

ANNEXURES

- ✓ Electrical schematics
 - ✓ R25 à R200
 - ✓ R200P
- ✓ Certificate of incorporation
- ✓ Declaration of conformity

Doc N° : 02ENU75	Rev:0	Written by: M. Parthiot	
File :02ENU750	Date : 22/12/06	Checked by: F.Lavogiez	Page : 15 / 15

CERTIFICATE OF INCORPORATION

Part of machine

The manufacturer,

METAL DEPLOYE RESISTOR 1, route de Semur 21500 MONTBARD

Declares that the part of machine described below :

Electrolytic starter VECTROSTAR R

Manufactured in MONTBARD by METAL DEPLOYE RESISTOR

Is a sub-unit to be incorporated in a machine or assembled with other machine units. The directive $n^{\circ}89/392/eee$ modified will be applicable to the machine created by this units assembly.

THE STARTER MUST NOT BE USED BEFORE BEING INCORPORATED IN A MACHINE COMPLIANT WITH THE DIRECTIVE.

Montbard, March 09th 2006

Mathias PARTHIOT Project manager

CERTIFICATE OF CONFORMITY

The manufacturer,

METAL DEPLOYE RESISTOR 1, route de Semur 21500 MONTBARD

Declares that the part of machine described below :

Electrolytic starter VECTROSTAR R

Manufactured in MONTBARD by METAL DEPLOYE RESISTOR

is compliant with CE directives applicable to this kind of machine.

Montbard, March 09th 2006

Mathias PARTHIOT Project Manager

thinking